Frequent cases of RAS-mutated down syndrome acute lymphoblastic leukaemia lack JAK2 mutations
Children with Down syndrome (DS) and acute lymphoblastic leukaemia (ALL) have poorer survival and more relapses than non-DS children with ALL, highlighting an urgent need for deeper mechanistic understanding of DS–ALL. Here, using full-exome or cancer genes-targeted sequencing of 42 ALL samples from...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2014
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/101511 http://hdl.handle.net/10220/24153 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Children with Down syndrome (DS) and acute lymphoblastic leukaemia (ALL) have poorer survival and more relapses than non-DS children with ALL, highlighting an urgent need for deeper mechanistic understanding of DS–ALL. Here, using full-exome or cancer genes-targeted sequencing of 42 ALL samples from 39 DS patients, we uncover driver mutations in RAS, (KRAS and NRAS) recurring to a similar extent (15/42) as JAK2 (12/42) mutations or P2RY8-CRLF2 fusions (14/42). RAS mutations are almost completely mutually exclusive with JAK2 mutations (P=0.016), driving a combined total of two-thirds of analysed cases. Clonal architecture analysis reveals that both RAS and JAK2 drove sub-clonal expansions primarily initiated by CRLF2 rearrangements, and/or mutations in chromatin remodellers and lymphocyte differentiation factors. Remarkably, in 2/3 relapsed cases, there is a switch from a primary JAK2- or PTPN11-mutated sub-clone to a RAS-mutated sub-clone in relapse. These results provide important new insights informing the patient stratification strategies for targeted therapeutic approaches for DS–ALL. |
---|