A new method of online learning with kernels for regression
New optimization models and algorithms for online learning with kernels (OLK) in regression are proposed in a Reproducing Kernel Hilbert Space (RKHS) by solving a constrained optimization model. The “forgetting” factor in the model makes it possible that the memory requirement of the algorithm can b...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/102001 http://hdl.handle.net/10220/12713 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|