Optimal family of q-ary codes obtained from a substructure of generalised Hadamard matrices

In this article we construct an infinite family of linear error correcting codes over Fq for any prime power q. The code parameters are [q2t + qt-1 - q2t-1 - qt, 2t+1, q2t + q2t-2 + qt-1 - 2q2t-1 - qt]q, for any positive integer t. This family is a generalisation of the optimal self-complementary bi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Bracken, Carl, Chee, Yeow Meng, Purkayastha, Punarbasu
其他作者: School of Physical and Mathematical Sciences
格式: Conference or Workshop Item
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/102595
http://hdl.handle.net/10220/16387
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In this article we construct an infinite family of linear error correcting codes over Fq for any prime power q. The code parameters are [q2t + qt-1 - q2t-1 - qt, 2t+1, q2t + q2t-2 + qt-1 - 2q2t-1 - qt]q, for any positive integer t. This family is a generalisation of the optimal self-complementary binary codes with parameters [2u2 - u, 2t + 1, u2 - u]2, where u = 2t-1. The codes are obtained by considering a submatrix of a specially constructed generalised Hadamard matrix. The optimality of the family is confirmed by using a recently derived generalisation of the Grey-Rankin bound when t >; 1, and the Griesmer bound when t = 1.