Shear lag analysis by the adaptive finite element method

Due to the presence of sharp stress gradients, traditional finite element analysis using uniform meshes for the solution of shear lag problems for thin-walled structures is inefficient and will result in inaccurate values of effective breadth ratio. By using the adaptive finite element analysis,...

全面介紹

Saved in:
書目詳細資料
Main Authors: Lee, Chi King, Wu, G.J
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2014
主題:
在線閱讀:https://hdl.handle.net/10356/103117
http://hdl.handle.net/10220/19308
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Due to the presence of sharp stress gradients, traditional finite element analysis using uniform meshes for the solution of shear lag problems for thin-walled structures is inefficient and will result in inaccurate values of effective breadth ratio. By using the adaptive finite element analysis, it is possible to obtain results with predetermined accuracy with a minimum amount of computational cost. An adaptive finite element analysis procedure is used to deal with the problem of shear lag effects of plated structures with arbitrary dimension and geometry. This study consists of two parts. In Part 1 of the study, shear lag effects in simple plated structures, such as straight rectangular, single-cell box girders are studied. In Part 2 of the study, the adaptive refinement procedure will be extended to the shear lag analysis of complex plated structures such as core walls with openings, multi-cell box girders and box girders with curve flanges.