A 3.54 nJ/bit-RX, 0.671 nJ/bit-TX burst mode super-regenerative UWB transceiver in 0.18- μm CMOS
Non-coherent ultra-wideband (UWB) transceiver employing energy detector suffers from degradation in output SNR due to the squarer. A burst mode super-regenerative UWB transceiver which can recover the received signal to rail-to-rail with relatively fewer post-amplification stages is proposed. Unlike...
Saved in:
Main Authors: | , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2014
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/103627 http://hdl.handle.net/10220/24511 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | Non-coherent ultra-wideband (UWB) transceiver employing energy detector suffers from degradation in output SNR due to the squarer. A burst mode super-regenerative UWB transceiver which can recover the received signal to rail-to-rail with relatively fewer post-amplification stages is proposed. Unlike other super-regenerative receiver architectures that use oscillator, the proposed architecture employs a positive feedback loop to achieve the super-regeneration of received signal and thus eliminates the need for external resonator or quench signal. The transceiver is suitable for low data rate sensor networks application covering spectrum of 3-5 GHz. Manufactured in CMOS 0.18-μm technology, the transceiver occupies an area of 2.2 mm × 2 mm. By exploiting the duty cycle and the transceiver on-time through the burst mode operation for a given data rate of 1 Mbps, it can achieve transmitter energy efficiency of 0.671 nJ/bit and receiver energy efficiency of 3.54 nJ/bit. |
---|