On binary de Bruijn sequences from LFSRs with arbitrary characteristic polynomials

We propose a construction of de Bruijn sequences by the cycle joining method from linear feedback shift registers (LFSRs) with arbitrary characteristic polynomial f(x). We study in detail the cycle structure of the set Ω(f(x)) that contains all sequences produced by a specific LFSR on distinct in...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Chang, Zuling, Ezerman, Martianus Frederic, Ling, San, Wang, Huaxiong
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2019
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/103689
http://hdl.handle.net/10220/48593
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We propose a construction of de Bruijn sequences by the cycle joining method from linear feedback shift registers (LFSRs) with arbitrary characteristic polynomial f(x). We study in detail the cycle structure of the set Ω(f(x)) that contains all sequences produced by a specific LFSR on distinct inputs and provide a fast way to find a state of each cycle. This leads to an efficient algorithm to find all conjugate pairs between any two cycles, yielding the adjacency graph. The approach is practical to generate a large class of de Bruijn sequences up to order n≈20. Many previously proposed constructions of de Bruijn sequences are shown to be special cases of our construction.