Multi-manifold metric learning for face recognition based on image sets

In this paper, we propose a new multi-manifold metric learning (MMML) method for the task of face recognition based on image sets. Different from most existing metric learning algorithms that learn the distance metric for measuring single images, our method aims to learn distance metrics to measu...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Huang, Likun, Lu, Jiwen, Tan, Yap Peng
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/103837
http://hdl.handle.net/10220/24578
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this paper, we propose a new multi-manifold metric learning (MMML) method for the task of face recognition based on image sets. Different from most existing metric learning algorithms that learn the distance metric for measuring single images, our method aims to learn distance metrics to measure the similarity between manifold pairs. In our method, each image set is modeled as a manifold and then multiple distance metrics among different manifolds are learned. With these distance metrics, the intra-class manifold variations are minimized and inter-class manifold variations are maximized simultaneously. For each person, we learn a distance metric by using such a criterion that all the learned distance metrics are person-specific and thus more discriminative. Our method is extensively evaluated on three widely studied face databases, i.e., Honda/UCSD database, CMU MoBo database and Youtube Celebrities database, and compared to the state-of-the-arts. Experimental results are presented to show the effectiveness of the proposed method.