Moving-window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing

The characteristics of nonlinearity and time-varying changes in most industrial processes usually cripple the predictive performance of conventional soft sensors. In this article, moving-window Gaussian process regression (MWGPR) is proposed to effectively capture the process dynamics and to model n...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ni, Wangdong, Tan, Soon Keat, Ng, Wun Jern, Brown, Steven D.
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/105944
http://hdl.handle.net/10220/16749
http://dx.doi.org/10.1021/ie201898a
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English