Spatial locality-aware sparse coding and dictionary learning
Nonlinear encoding of SIFT features has recently shown good promise in image classification. This scheme is able to reduce the training complexity of the traditional bag-of-feature approaches while achieving better performance. As a result, it is suitable for large-scale image classification applica...
Saved in:
Main Authors: | Wang, Jiang, Yuan, Junsong, Chen, Zhuoyuan, Wu, Ying |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2014
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/106281 http://hdl.handle.net/10220/24002 http://jmlr.org/proceedings/papers/v25/wang12a/wang12a.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Towards scalable summarization of consumer videos via sparse dictionary selection
由: Cong, Yang, et al.
出版: (2013) -
Image restoration using sparse dictionary
由: Dai, Shi
出版: (2018) -
Image restoration using sparse dictionary
由: Tai, Ivan Wei Zhong
出版: (2019) -
Target localization in multipath propagation environment using dictionary-based sparse representation
由: Liu, Yuan, et al.
出版: (2021) -
Dictionary training for sparse representation as generalization of K-means clustering
由: Sahoo, Sujit Kumar, et al.
出版: (2013)