Complexity of equivalence relations and preorders from computability theory
We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relations R; S, a componentwise reducibility is de ned by R ≤ S ⇔ ∃f ∀x, y [xRy ↔ f(x) S f(y)]. Here f is taken from a suitable class of effective functions. For us...
Saved in:
Main Authors: | Ianovski, Egor, Miller, Russell, Ng, Keng Meng, Nies, Andre |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2015
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/107263 http://hdl.handle.net/10220/25392 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
On equivalence relations and bounded turing degrees
由: Yu, Hongyuan
出版: (2018) -
Computability theory and applications
由: Khoo, Kai Jun
出版: (2023) -
Computability theory and algebra
由: Wu, Huishan
出版: (2017) -
Axiomatic set theory beyond the continuum hypothesis
由: Neo, Chee Heng
出版: (2022) -
Cupping in the computably enumerable degrees
由: Tran, Hong Hanh
出版: (2023)