Fooling-sets and rank
An n x n matrixM is called a fooling-set matrix of size n if its diagonal entries are nonzero and Mk,l; Ml,k = 0 for every k ≠ l. Dietzfelbinger, Hromkovič, and Schnitger (1996) showed that n ≤ (rkM)2, regardless of over which field the rank is computed, and asked whether the exponent on rkM can be...
Saved in:
Main Authors: | Friesen, Mirjam, Hamed, Aya, Lee, Troy, Oliver Theis, Dirk |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2015
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/107304 http://hdl.handle.net/10220/25431 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
The odd moments of ranks and cranks
由: Chan, Song Heng, et al.
出版: (2013) -
P-ranks and automorphism of group divisible designs.
由: Tan, Yee Sern.
出版: (2009) -
The interplay of designs and difference sets
由: Huang, Yiwei
出版: (2011) -
Constructions of relative difference sets with classical parameters and circulant weighing matrices
由: Leung, Ka Hin, et al.
出版: (2009) -
A sharp exponent bound for McFarland difference sets with p=2
由: Ma, Siu Lun., et al.
出版: (2009)