Short-term load forecasting by wavelet transform and evolutionary extreme learning machine

This paper proposes a novel short-term load forecasting (STLF) method based on wavelet transform, extreme learning machine (ELM) and modified artificial bee colony (MABC) algorithm. The wavelet transform is used to decompose the load series for capturing the complicated features at different frequen...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Li, Song, Wang, Peng, Goel, Lalit
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/107399
http://hdl.handle.net/10220/25475
http://dx.doi.org/10.1016/j.epsr.2015.01.002
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This paper proposes a novel short-term load forecasting (STLF) method based on wavelet transform, extreme learning machine (ELM) and modified artificial bee colony (MABC) algorithm. The wavelet transform is used to decompose the load series for capturing the complicated features at different frequencies. Each component of the load series is then separately forecasted by a hybrid model of ELM and MABC (ELM-MABC). The global search technique MABC is developed to find the best parameters of input weights and hidden biases for ELM. Compared to the conventional neuro-evolution method, ELM-MABC can improve the learning accuracy with fewer iteration steps. The proposed method is tested on two datasets: ISO New England data and North American electric utility data. Numerical testing shows that the proposed method can obtain superior results as compared to other standard and state-of-the-art methods.