Moving target defense for embedded deep visual sensing against adversarial examples
Deep learning-based visual sensing has achieved attractive accuracy but is shown vulnerable to adversarial example attacks. Specifically, once the attackers obtain the deep model, they can construct adversarial examples to mislead the model to yield wrong classification results. Deployable adversari...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/136723 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|