List decodability of symbol-pair codes
We investigate the list decodability of symbol-pair codes 1 in this paper. First, we show that the list decodability of every symbol-pair code does not exceed the Gilbert-Varshamov bound. On the other hand, we are able to prove that with high probability, a random symbol-pair code can be list decode...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/138021 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | We investigate the list decodability of symbol-pair codes 1 in this paper. First, we show that the list decodability of every symbol-pair code does not exceed the Gilbert-Varshamov bound. On the other hand, we are able to prove that with high probability, a random symbol-pair code can be list decoded up to the Gilbert-Varshamov bound. Our second result of this paper is to derive the Johnson-type bound, i.e., a lower bound on list decoding radius in terms of minimum distance. Finally, we present a list decoding algorithm of Reed-Solomon codes beyond the Johnson-type bound in the pair metric. 1 A symbol-pair code is referred to a code in the pair metric. |
---|