List decodability of symbol-pair codes

We investigate the list decodability of symbol-pair codes 1 in this paper. First, we show that the list decodability of every symbol-pair code does not exceed the Gilbert-Varshamov bound. On the other hand, we are able to prove that with high probability, a random symbol-pair code can be list decode...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Liu, Shu, Xing, Chaoping, Yuan, Chen
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/138021
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:We investigate the list decodability of symbol-pair codes 1 in this paper. First, we show that the list decodability of every symbol-pair code does not exceed the Gilbert-Varshamov bound. On the other hand, we are able to prove that with high probability, a random symbol-pair code can be list decoded up to the Gilbert-Varshamov bound. Our second result of this paper is to derive the Johnson-type bound, i.e., a lower bound on list decoding radius in terms of minimum distance. Finally, we present a list decoding algorithm of Reed-Solomon codes beyond the Johnson-type bound in the pair metric. 1 A symbol-pair code is referred to a code in the pair metric.