Homomorphic encryption(HE) enabled federated learning
In this report, to maximise data privacy, we conducted Federated Learning algorithm with Homomorphic Encryption. The project was done in stages. Initially, federated learning was done without applying homomorphic encryption. Homomorphic encryption was applied in a progressive manner at a later stage...
Saved in:
主要作者: | Myat Nyein Soe |
---|---|
其他作者: | Anupam Chattopadhyay |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/138191 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Encrypted data processing with Homomorphic Re-Encryption
由: DING, Wenxiu, et al.
出版: (2017) -
MPC-enabled privacy-preserving machine learning
由: Liu, Ziyao
出版: (2023) -
Image encryption
由: Ng, Kelly Xin Yi
出版: (2015) -
Privacy-preserving SQL queries for encrypted databases
由: Tan, Chun Wen
出版: (2020) -
Encrypted genomes: advancing personalized medicine with homomorphic encryption
由: Lee, Bryan Wei Han
出版: (2024)