A privacy-preserving diffusion strategy over multitask networks
We develop a privacy-preserving distributed strategy over multitask diffusion networks, where each agent is interested in not only improving its local inference performance via in-network cooperation, but also protecting its own individual task against privacy leakage. In the proposed strategy, at e...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/138203 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | We develop a privacy-preserving distributed strategy over multitask diffusion networks, where each agent is interested in not only improving its local inference performance via in-network cooperation, but also protecting its own individual task against privacy leakage. In the proposed strategy, at each time instant, each agent sends a noisy estimate, which is its local intermediate estimate corrupted by a zero-mean additive noise, to its neighboring agents. We derive a sufficient condition to determine the amount of noise to add to each agent's intermediate estimate to achieve an optimal trade-off between the steady-state network mean-square-deviation and an inference privacy constraint. We show that the proposed noise powers are bounded and convergent, which leads to mean-square convergence of the proposed privacy-preserving multitask diffusion scheme. Simulation results demonstrate that the proposed strategy is able to balance the trade-off between estimation accuracy and privacy preservation. |
---|