Deep autonomous learning machine for IoT streaming analytics

With the technological advancement in Internet of Things (IoT), it has been employed in multiple areas such as healthcare, manufacturing, home automations. The wide applications of IoT accelerate the rate of data generation, resulting in an explosion of data. Furthermore, IoT devices generate and tr...

全面介紹

Saved in:
書目詳細資料
主要作者: Li, Jinquan
其他作者: Mahardhika Pratama
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/138224
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:With the technological advancement in Internet of Things (IoT), it has been employed in multiple areas such as healthcare, manufacturing, home automations. The wide applications of IoT accelerate the rate of data generation, resulting in an explosion of data. Furthermore, IoT devices generate and transmit data in streams which lead to increase interest in real-time data stream classification. Consequently, traditional algorithms are inefficient to cope with the large volumes of data stream. In various IoT applications, the use of recurrent neural network (RNN) is desirable due to the sequential nature of the data stream. This allows an RNN-based classifier to handle sequential data and to retain temporal information. However, with the large volume of data stream, traditional RNN-based classifiers are offline in nature and impractical in the streaming context. ADL and NADINE are therefore, introduced to address data stream problems in the continual fashion. The ADL and NADINE are compared with traditional RNN-based classifiers to demonstrates their performance in data stream classification.