Glycosylated copper sulfide nanocrystals for targeted photokilling of bacteria in the near‐infrared II window

Photothermal and photodynamic therapies are established as alternative approaches to combating bacterial infections; however, the heat and reactive oxygen species generated by the photoagents act on both normal and bacterial cells. A targeting strategy is thus required to minimize side effects and e...

全面介紹

Saved in:
書目詳細資料
Main Authors: Hou, Shuai, Mahadevegowda, Surendra Hittanahalli, Mai, Van Cuong, Chan‐Park, Mary Bee Eng, Duan, Hongwei
其他作者: School of Chemical and Biomedical Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/138815
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Photothermal and photodynamic therapies are established as alternative approaches to combating bacterial infections; however, the heat and reactive oxygen species generated by the photoagents act on both normal and bacterial cells. A targeting strategy is thus required to minimize side effects and enhance the antibacterial efficiency. Glycoconjugates specifically interacting with bacterial lectins have emerged as a new class of materials for targeting bacteria. In this paper, galactosylated plasmonic copper sulfide nanocrystals (Cu2−xS NCs) are used to target Pseudomonas aeruginosa via galactose–LecA interactions and kill the bacteria by simultaneous photothermal and photodynamic therapy. Galactosylated Cu2−xS NCs are obtained by functionalizing the nanocrystals with tri‐thiogalactoside glycoclusters. The excellent specificity of galactosylated nanoparticles toward LecA with a LecA‐deficient P. aeruginosa strain as the control is first demonstrated. Afterward, a laser in the near‐infrared II window is used to kill the bacteria, and the critical role of targeted binding in efficient killing of bacteria is highlighted. This approach can be readily generalized to the targeting of other pathogens which have highly specific carbohydrate‐binding lectins.