Applications of artificial intelligence in process parameter optimization for metal 3D printing

Additive manufacturing (AM) flourished in the 1980s and it involves the process of making objects layer by layer from a 3D Computer-aided Design (CAD) model. Since the 1990s, Machine Learning started to flourish, and the applications evolved from achieving artificial intelligence to tackling solvabl...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Tan, Xian Xun
مؤلفون آخرون: Tor Shu Beng
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/141414
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Additive manufacturing (AM) flourished in the 1980s and it involves the process of making objects layer by layer from a 3D Computer-aided Design (CAD) model. Since the 1990s, Machine Learning started to flourish, and the applications evolved from achieving artificial intelligence to tackling solvable practical problems. Grid search method is typically used in experiments to find the optimized process parameters. However, it may be costly and inefficient to print every samples for every parameter setting. This project uses random search approach to optimize process parameters in metal 3D printing. This helps to make the printing more efficient and cost-effective by leveraging on the uses of Machine Learning. This paper aims to carry out a comprehensive investigation into the optimization of process parameters using a random search approach. This project includes fracture mechanism analysis and surface analysis for Electron Beam Melting Ti-6Al-4V obtained experimentally. Using Machine Learning, process parameters will link with mechanical properties like Ultimate Tensile Strength and physical properties like relative build density. Machine Learning models are then constructed and discussed to find the optimized process parameters.