Probability-weighted robust optimization for distributed generation planning in microgrids

Distributed generation (DG) has been rapidly integrated into microgrids. However, uncertain power generation of intermittent DG such as wind turbines brings challenges to the DG planning problem. This paper proposes a novel probability-weighted robust optimization (PRO) method to allocate DG units i...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Cuo, Xu, Yan, Dong, Zhao Yang
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/141505
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Distributed generation (DG) has been rapidly integrated into microgrids. However, uncertain power generation of intermittent DG such as wind turbines brings challenges to the DG planning problem. This paper proposes a novel probability-weighted robust optimization (PRO) method to allocate DG units including microturbines and wind turbines in microgrids, aiming to maximize the total profit over a long-term planning horizon. First, probability-weighted uncertainty sets are proposed to model uncertainties including wind turbine output and load demand during a long-term planning horizon which can fully cover the uncertainty spectrum and accurately represent the uncertainty probability distribution. Then, the PRO method optimizes DG sizing and locating under the worst uncertainty cases considering their occurrence probabilities. Therefore, the planning decision is robust against any possible uncertainty realization. Besides, a modified column-and-constraint generation algorithm is developed to solve the PRO problem. Simulation results show that the DG planning obtained by the proposed method can achieve full operating robustness.