Complex-image-based sparse sar imaging and its equivalence

Using sparse signal processing to replace matched filtering (MF) in synthetic aperture radar (SAR) imaging has shown significant potential to improve image quality. Due to the huge computational cost needed, it is difficult to apply conventional observation-matrix-based sparse SAR imaging method for...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Bi, Hui, Bi, Guoan, Zhang, Bingchen, Hong, Wen
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/142237
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Using sparse signal processing to replace matched filtering (MF) in synthetic aperture radar (SAR) imaging has shown significant potential to improve image quality. Due to the huge computational cost needed, it is difficult to apply conventional observation-matrix-based sparse SAR imaging method for large-scene reconstruction. The azimuth-range decouple method is able to minimize the computational complexity and achieve image performance similar to that obtained by the observation-matrix-based algorithm. However, there still exist two difficult problems in sparse SAR imaging, i.e., real-Time processing and lack of raw data. To solve these problems, this paper presents a novel complex-image-based sparse SAR imaging method. It is found that if the input MF-recovered SAR complex image is obtained via fully sampled raw data, the proposed method can achieve an identical high-resolution image to that obtained by the azimuth-range decouple algorithm. The computational complexity is also decreased to the same order as that of MF, which makes the real-Time sparse SAR imaging become possible. In addition, it should be noted that even though without raw data, the proposed method can still obtain impressive sparse recovery performance by using only the available complex image. Performance analysis and experimental results on real data validate the proposed method.