SGDNet : an end-to-end saliency-guided deep neural network for no-reference image quality assessment
We propose an end-to-end saliency-guided deep neural network (SGDNet) for no-reference image quality assessment (NR-IQA). Our SGDNet is built on an end-to-end multi-task learning framework in which two sub-tasks including visual saliency prediction and image quality prediction are jointly optimized...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/144191 https://doi.org/10.21979/N9/H38R0Z |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |