Aeroelastic load control of large and flexible wind turbines through mechanically driven flaps

The load reduction of the wind turbine through the use of flaps actuated through novel mechanical network is studied. The aeroservoelastic model of the wind turbine couples the composite beam description for blades and tower to the unsteady vortex-lattice method for the aerodynamics. The trailing-ed...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wei, Xing, Ng, Bing Feng, Zhao, Xiaowei
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/144356
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The load reduction of the wind turbine through the use of flaps actuated through novel mechanical network is studied. The aeroservoelastic model of the wind turbine couples the composite beam description for blades and tower to the unsteady vortex-lattice method for the aerodynamics. The trailing-edge flap dynamics are incorporated to the wind turbine model to enable the use of mechanical network to control the flap rotation. A passive mechanical controller is proposed, which senses the relative angular velocity of the trailing-edge flap and generate the control torque. The mechanical controller is realised by passive components including springs, dampers and inerters in rotational form. The parameters of the mechanical components and flap configuration parameters are optimised by H∞ and H2 optimisation, respectively. It is shown that mechanical controllers exhibit marked reductions in blade root-bending moment, blade tip deflection and tower top fore-aft deflection in the presence of external disturbances, especially with the optimised flap configuration parameters.