Analytical derivation of intersubmodule active power disparity limits in modular multilevel converter-based battery energy storage systems

Due to a dramatic increase in grid-connected renewable energy resources, energy storage systems (ESSs) are interesting and important for future power systems, among which the modular multilevel converter (MMC)-based battery energy storage systems (BESSs) are one of the most modular, efficient and fl...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Liang, Gaowen, Tafti, Hossein Dehghani, Farivar, Glen G., Pou, Josep, Townsend, Christopher D., Konstantinou, Georgios, Ceballos, Salvador
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/144403
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Due to a dramatic increase in grid-connected renewable energy resources, energy storage systems (ESSs) are interesting and important for future power systems, among which the modular multilevel converter (MMC)-based battery energy storage systems (BESSs) are one of the most modular, efficient and flexible topologies. Uneven active power distribution among sub-modules (SMs) in the arms of an MMC-based BESS is necessary for certain applications. The main contribution of this paper is to present a general analysis of the inter-SM active power disparity problem which incorporates the inherent operational constraints of the MMC converter. An analytical method to derive inter-SM active power disparity limits is introduced. The proposed analysis can help facilitate the design of MMC-based BESS for applications such as recycled batteries and hybrid battery chemistries, which can both require significant inter-SM active power disparity. The analysis formulates a criteria vector and criterion value that describes whether an MMC-based BESS is capable of supplying demanded output powers while subject to inter-SM active power disparity. Simulation and experimental results are obtained on a single-phase system with varying numbers of SMs per arm, which verifies the feasibility and generality of the proposed analytical method.