Inferring biosynthetic and gene regulatory networks from Artemisia annua RNA sequencing data on a credit card-sized ARM computer

Prediction of gene function and gene regulatory networks is one of the most active topics in bioinformatics. The accumulation of publicly available gene expression data for hundreds of plant species, together with advances in bioinformatical methods and affordable computing, sets ingenuity as one of...

全面介紹

Saved in:
書目詳細資料
Main Authors: Tan, Qiao Wen, Mutwil, Marek
其他作者: School of Biological Sciences
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/144886
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Prediction of gene function and gene regulatory networks is one of the most active topics in bioinformatics. The accumulation of publicly available gene expression data for hundreds of plant species, together with advances in bioinformatical methods and affordable computing, sets ingenuity as one of the major bottlenecks in understanding gene function and regulation. Here, we show how a credit card-sized computer retailing for <50 USD can be used to rapidly predict gene function and infer regulatory networks from RNA sequencing data. To achieve this, we constructed a bioinformatical pipeline that downloads and allows quality-control of RNA sequencing data; and generates a gene co-expression network that can reveal enzymes and transcription factors participating and controlling a given biosynthetic pathway. We exemplify this by first identifying genes and transcription factors involved in the biosynthesis of secondary cell wall in the plant Artemisia annua, the main natural source of the anti-malarial drug artemisinin. Networks were then used to dissect the artemisinin biosynthesis pathway, which suggest potential transcription factors regulating artemisinin biosynthesis. We provide the source code of our pipeline (https://github.com/mutwil/LSTrAP-Lite) and envision that the ubiquity of affordable computing, availability of biological data and increased bioinformatical training of biologists will transform the field of bioinformatics. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.