Repairing algebraic geometry codes
Minimum storage regenerating codes have minimum storage of data in each node and therefore are maximal distance separable (for short) codes. Thus, the number of nodes is upper-bounded by 2 b , where ú is the bits of data stored in each node. From both theoretical and practical points of view (see th...
Saved in:
Main Authors: | Jin, Lingfei, Luo, Yuan, Xing, Chaoping |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/145509 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov bound
由: Jin, Lingfei, et al.
出版: (2020) -
Erasure List-Decodable Codes From Random and Algebraic Geometry Codes
由: Ding, Yang, et al.
出版: (2016) -
Asymptotic bounds on quantum codes from algebraic geometry codes
由: Feng, Keqin, et al.
出版: (2013) -
Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes
由: Jin, Lingfei, et al.
出版: (2013) -
A generalization of algebraic-geometry codes
由: Xing, C., et al.
出版: (2013)