Thermal behavior of spin-current generation in PtxCu1-x devices characterized through spin-torque ferromagnetic resonance

High temperature studies of spin Hall effect have often been neglected despite its profound significance in real-world devices. In this work, high temperature spin torque ferromagnetic resonance measurement was performed to evaluate the effects of temperature on the Gilbert damping and spin Hall eff...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wong, Grayson Dao Hwee, Law, Wai Cheung, Tan, Funan, Gan, Weiliang, Ang, Calvin Ching Ian, Xu, Zhan, Seet, C. S., Lew, Wen Siang
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/146111
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:High temperature studies of spin Hall effect have often been neglected despite its profound significance in real-world devices. In this work, high temperature spin torque ferromagnetic resonance measurement was performed to evaluate the effects of temperature on the Gilbert damping and spin Hall efficiency of PtxCu1−x. When the temperature was varied from 300 K to 407 K, the Gilbert damping was relatively stable with a change of 4% at composition x = 66%. Alloying Pt and Cu improved the spin Hall efficiency of Pt75Cu25/Co/Ta by 29% to a value of 0.31 ± 0.03 at 407 K. However, the critical switching current density is dependent on the ratio between the Gilbert damping and spin Hall efficiency and the smallest value was observed when x = 47%. It was found that at this concentration, the spin transparency was at its highest at 0.85 ± 0.09 hence indicating the importance of interfacial transparency for energy efficient devices at elevated temperature.