Adaptive generative adversarial network (GAN) for small datasets

This paper starts from the basic mathematic knowledge in the deep learning network, then introduces some helpful and important infrastructure networks, it will also show programming tools and pods to help us build up our network. After that, this paper introduces the basic principle of GAN and analy...

全面介紹

Saved in:
書目詳細資料
主要作者: Liu, Chang
其他作者: Ponnuthurai Nagaratnam Suganthan
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2021
主題:
在線閱讀:https://hdl.handle.net/10356/147096
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This paper starts from the basic mathematic knowledge in the deep learning network, then introduces some helpful and important infrastructure networks, it will also show programming tools and pods to help us build up our network. After that, this paper introduces the basic principle of GAN and analyzes the relevant classical GAN model. For small data sets, the method of using complex distribution such as Gaussian mixture models is proposed to enhance the simple sampling noise and a new model is created on this base which is called DeLiGAN. The main idea of the DeLiGAN is to increase the modeling capability of the prior distribution rather than increasing the depth of the model and reparametrize potential space into a mixed Gaussian model. By comparing the training results of different GAN models, it is concluded that DeLiGAN does perform better on the small data sets. This model provides a training model under a small data set, which can help us better train the neural network and improve training efficiency