Optimizing filter-bank canonical correlation analysis for fast response SSVEP Brain-Computer Interface (BCI)
Steady-State Visual Evoked Potential (SSVEP) BCI brings high accuracy and consistent performance across subjects at the expense of a long stimulus presentation time window. Several recent methods exploited subject-specific features to improve SSVEP recognition performance in a short time window less...
Saved in:
Main Authors: | Phyo Wai, Aung Aung, Guo, Heng, Chi, Ying, Zhang, Lei, Hua, Xian-Sheng, Guan, Cuantai |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/147516 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Spectrum and phase adaptive CCA for SSVEP-based brain computer interface
由: Zhang, Zhuo, et al.
出版: (2020) -
An asynchronous P300 BCI with SSVEP-based control state detection
由: Panicker, R.C., et al.
出版: (2014) -
A transformer-based deep neural network model for SSVEP classification
由: Chen, Jianbo, et al.
出版: (2023) -
Adaptation and Control State Detection Techniques for Brain-Computer Interfaces
由: RAJESH CHANDRASEKHARA PANICKER
出版: (2012) -
Multimodal intraoperative neuromonitoring in corrective surgery for adolescent idiopathic scoliosis: Evaluation of 354 consecutive cases
由: Kundnani, V., et al.
出版: (2016)