On diversity of certain T-intersecting families

Let [n] = {1, 2, …, n} and 2[n] be the set of all subsets of [n]. For a family F ⊆ 2[n], its diversity, denoted by div(F), is defined to be div(F) = minx∈[n]{|F(x)|}, where F(x) = {F ϵ F: x ⊄ F }. Basically, div(F) measures how far F is from a trivial intersecting family, which is called a star. In...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ku, Cheng Yeaw, Wong, Kok Bin
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/147616
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Let [n] = {1, 2, …, n} and 2[n] be the set of all subsets of [n]. For a family F ⊆ 2[n], its diversity, denoted by div(F), is defined to be div(F) = minx∈[n]{|F(x)|}, where F(x) = {F ϵ F: x ⊄ F }. Basically, div(F) measures how far F is from a trivial intersecting family, which is called a star. In this paper, we consider a generalization of diversity for t-intersecting family.