On diversity of certain T-intersecting families
Let [n] = {1, 2, …, n} and 2[n] be the set of all subsets of [n]. For a family F ⊆ 2[n], its diversity, denoted by div(F), is defined to be div(F) = minx∈[n]{|F(x)|}, where F(x) = {F ϵ F: x ⊄ F }. Basically, div(F) measures how far F is from a trivial intersecting family, which is called a star. In...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/147616 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Let [n] = {1, 2, …, n} and 2[n] be the set of all subsets of [n]. For a family F ⊆ 2[n], its diversity, denoted by div(F), is defined to be div(F) = minx∈[n]{|F(x)|}, where F(x) = {F ϵ F: x ⊄ F }. Basically, div(F) measures how far F is from a trivial intersecting family, which is called a star. In this paper, we consider a generalization of diversity for t-intersecting family. |
---|