Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries
Antimony sulfide (Sb2S3) has been employed for materials of the potential anode in sodium-ion batteries (SIBs) because it possesses a high theoretical capacity. However, volume variations coupled with sluggish diffusion kinetics cause rapid capacity degradation and cyclic instability during the sodi...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/150297 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Antimony sulfide (Sb2S3) has been employed for materials of the potential anode in sodium-ion batteries (SIBs) because it possesses a high theoretical capacity. However, volume variations coupled with sluggish diffusion kinetics cause rapid capacity degradation and cyclic instability during the sodiation/desodiation process. Here, we introduce a simple strategy to develop nitrogen-doped carbon-encapsulated antimony sulfide nanowire (Sb2S3@N-C) composites for the anode in SIBs. The resulting composites display excellent electrochemical characteristics with remarkable rate capability, ultrahigh capacity, and excellent stability derived from the synergistic effect between a one-dimensional Sb2S3 nanowire and a nitrogen-doped carbon, thus demonstrating the Sb2S3@N-C composites as a material with potential characteristics for the anode in next-generation storage devices. Electrochemical analysis reveals that pseudocapacitive behavior dominates the overall electrochemical process of the Sb2S3@N-C composites, which is responsible for the fast capacitive charge storage. |
---|