A deep-learning approach to the dynamics of Landau-Zener transitions

Traditional approaches to the dynamics of the open quantum systems with high precision are often resource intensive. How to improve computation accuracy and efficiency for target systems is an extremely difficult challenge. In this work, combining unsupervised and supervised learning algorithms, a d...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Gao, Linliang, Sun, Kewei, Zheng, Huiru, Zhao, Yang
مؤلفون آخرون: School of Materials Science and Engineering
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/150303
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Traditional approaches to the dynamics of the open quantum systems with high precision are often resource intensive. How to improve computation accuracy and efficiency for target systems is an extremely difficult challenge. In this work, combining unsupervised and supervised learning algorithms, a deep-learning approach is introduced to simulate and predict Landau–Zenner dynamics. Data obtained from multiple Davydov (Formula presented.) Ansatz with a low multiplicity of four are used for training, while the data from the trial state with a high multiplicity of ten are adopted as target data to assess the accuracy of prediction. After proper training, our method can successfully predict and simulate Landau–Zenner dynamics using only random noise and two adjustable model parameters. Compared to the high-precision dynamics data from multiple Davydov (Formula presented.) Ansatz with a multiplicity of ten, the error rate falls below 0.6%.