A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment
As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, h...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/151001 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, how to realize real-time short-term voltage stability (STVS) assessment is an essential yet challenging problem. This paper proposes a hierarchical and self-adaptive data-analytics method for real-time STVS assessment covering both the voltage instability and the fault-induced delayed voltage recovery phenomenon. Based on a strategically designed ensemble-based randomized learning model, the STVS assessment is achieved sequentially and self-adaptively. Besides, the assessment accuracy and the earliness are simultaneously optimized through the multiobjective programming. The proposed method has been tested on a benchmark power system, and its exceptional assessment accuracy, speed, and comprehensiveness are demonstrated by comparing with existing methods. |
---|