Comparison between MOEA/D and NSGA-III on a set of many and multi-objective benchmark problems with challenging difficulties

Currently, evolutionary multiobjective optimization (EMO) algorithms have been successfully used to find a good approximation of many-objective optimization problems (MaOPs). To measure the performance of EMO algorithms, many benchmark multiobjective test problems have been constructed. Among them,...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Li, Hui, Deb, Kalyanmoy, Zhang, Qingfu, Suganthan, Ponnuthurai Nagaratnam, Chen, Lei
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/151704
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Currently, evolutionary multiobjective optimization (EMO) algorithms have been successfully used to find a good approximation of many-objective optimization problems (MaOPs). To measure the performance of EMO algorithms, many benchmark multiobjective test problems have been constructed. Among them, DTLZ and WFG are two representative test suites with the scalability to the number of variables and objectives. It should be pointed out that MaOPs can be more challenging if they are involved with difficult problem features, such as objective scalability, complicated Pareto set, bias, disconnection, or degeneracy. In this paper, a set of ten new test problems with above-mentioned difficulties are constructed. Some experimental results on these test problems found by two popular EMO algorithms, i.e., MOEA/D and NSGA-III, are reported and analyzed. Moreover, the performance of these two EMO algorithms with different population sizes on these test problems are also studied.