Enhancing e-commerce recommender system adaptability with online deep controllable Learning-To-Rank
In the past decade, recommender systems for e-commerce have witnessed significant advancement. Recommendation scenarios can be divided into different type (e.g., pre-, during-, post-purchase, campaign, promotion, bundle) for different user groups or different businesses. For different scenarios, the...
Saved in:
Main Authors: | , , , , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://ojs.aaai.org/index.php/AAAI/article/view/17785 https://hdl.handle.net/10356/152717 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |