Enhancing e-commerce recommender system adaptability with online deep controllable Learning-To-Rank

In the past decade, recommender systems for e-commerce have witnessed significant advancement. Recommendation scenarios can be divided into different type (e.g., pre-, during-, post-purchase, campaign, promotion, bundle) for different user groups or different businesses. For different scenarios, the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zeng, Anxiang, Yu, Han, He, Hualin, Ni, Yabo, Li, Yongliang, Zhou, Jingren, Miao, Chunyan
其他作者: School of Computer Science and Engineering
格式: Conference or Workshop Item
語言:English
出版: 2021
主題:
在線閱讀:https://ojs.aaai.org/index.php/AAAI/article/view/17785
https://hdl.handle.net/10356/152717
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English