Speeding up deep neural network training with decoupled and analytic learning
Training deep neural networks usually demands a significantly long period of time. In this thesis, we explore methods in two different areas, i.e., decoupled learning and analytic learning, in order to reduce the training time. In decoupled learning, new methods are proposed to alleviate the sequ...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Thesis-Doctor of Philosophy |
اللغة: | English |
منشور في: |
Nanyang Technological University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/153079 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |