Image-to-image translation based on generative models

Image-to-image translation tasks have become a widely studied topic in computer vision. Image-to-image translation aims at finding a model that is fed with the input image and generating desired output image correspondingly. Previous studies that are based on deep neural networks were mostly built u...

全面介紹

Saved in:
書目詳細資料
主要作者: Tang, Mengxiao
其他作者: Ponnuthurai Nagaratnam Suganthan
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/154672
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Image-to-image translation tasks have become a widely studied topic in computer vision. Image-to-image translation aims at finding a model that is fed with the input image and generating desired output image correspondingly. Previous studies that are based on deep neural networks were mostly built upon encoder-decoder architecture, where a direct mapping from input to target output is learned, without exploring the distribution of images. In this thesis, generative models are used to capture the distribution of images, and the potentials of generative models on the image-to-image translation tasks are explored. Specifically, an improved CycleGAN is proposed to conduct the style transfer task and a DDPM-based conditional generative model is used for image colorization. Empirical results show that the generative models can achieve competitive results in image-to-image translation tasks.