HACScale : hardware-aware compound scaling for resource-efficient DNNs
Model scaling is an effective way to improve the accuracy of deep neural networks (DNNs) by increasing the model capacity. However, existing approaches seldom consider the underlying hardware, causing inefficient utilization of hardware resources and consequently high inference latency. In this pape...
Saved in:
Main Authors: | , , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/155808 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
成為第一個發表評論!