Terahertz microfluidic sensing with dual-torus toroidal metasurfaces

Toroidal excitation manifests as currents flowing on the surface of a torus along its meridians that are known as poloidal currents. Several intriguing phenomena such as nonradiating anapole excitation, dynamic Aharonov–Bohm effect, and vector potential in the absence of electromagnetic fields occur...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Xu, Jinjin, Liao, Denggao, Gupta, Manoj, Zhu, Yiming, Zhuang, Songlin, Singh, Rajan, Chen, Lin
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/156239
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Toroidal excitation manifests as currents flowing on the surface of a torus along its meridians that are known as poloidal currents. Several intriguing phenomena such as nonradiating anapole excitation, dynamic Aharonov–Bohm effect, and vector potential in the absence of electromagnetic fields occur in the presence of toroidal excitations. Toroidal resonances in metamaterials also offer a platform to probe strong light–matter interactions in its proximity due to the nonradiating confinement of photons. Here, a dual-torus toroidal flexible metasurface containing an array of overlapped split ring resonators is experimentally demonstrated, which results in strong field confinement for enhanced sensing of polar liquid analytes. Microfluidic integrated dual-torus toroidal resonance experimentally shows significantly higher sensitivity of 124.3 GHz per refractive index unit compared to a single torus toroidal resonance. Flexible metasurfaces supporting dual torus toroidal resonance can find a wide range of applications in the development of ultrasensitive terahertz molecular sensors for probing real time monitoring of chemicals and biomolecules.