Semi-supervised learning of functional connectome for disease classification
Overfitting is a common problem when computational models are applied on neuroimaging datasets, which are high-dimensional and small in terms of sample sizes, resulting in poor inferences such as ungeneralizable biomarkers. One way to overcome this is to pool datasets of similar diseases that are co...
محفوظ في:
المؤلف الرئيسي: | Yew, Wei Chee |
---|---|
مؤلفون آخرون: | Jagath C Rajapakse |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/156535 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Parkinson’s disease classification through multi-view learning of structural and functional connectome
بواسطة: Aung Hein Htoo
منشور في: (2021) -
Classification of major depressive disorder using functional connectome data
بواسطة: Tan, Jia Jun
منشور في: (2019) -
Learning Bregman distance functions for semi-supervised clustering
بواسطة: Wu, Lei., وآخرون
منشور في: (2013) -
Studying functional connectome of the human brain
بواسطة: Gupta, Sukrit
منشور في: (2020) -
Cross-modal synthesis of structural and functional connectome with CycleGAN for disease classification
بواسطة: Tieu, Phat Dat
منشور في: (2022)