Direct chemisorption-assisted nanotransfer printing with wafer-scale uniformity and controllability
Nanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods via a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156826 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | Nanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods via a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and photonic devices. Herein, we report a direct chemisorption-assisted nanotransfer printing technique based on the nanoscale lower melting effect, which is an enabling technology for two- or three-dimensional nanostructures with feature sizes ranging from tens of nanometers up to a 6 in. wafer-scale. The method solves the major bottleneck (large-scale uniform metal catalysts with nanopatterns) encountered by metal-assisted chemical etching. It also achieves wafer-scale, uniform, and controllable nanostructures with extremely high aspect ratios. We further demonstrate excellent uniformity and high performance of the resultant devices by fabricating 100 photodetectors on a 6 in. Si wafer. Therefore, our method can create a viable route for next-generation, wafer-scale, uniformly ordered, and controllable nanofabrication, leading to significant advances in various applications, such as energy harvesting, quantum, electronic, and photonic devices. |
---|