Robust portfolio optimization with covariates
In this project, we propose ARIMA regression as a methodology for the inclusion of covariate information into a robust CVaR minimization portfolio as a method to improve the performance of the portfolio optimization model. This methodology is compared with a robust CVaR minimization portfolio and an...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/156906 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | In this project, we propose ARIMA regression as a methodology for the inclusion of covariate information into a robust CVaR minimization portfolio as a method to improve the performance of the portfolio optimization model. This methodology is compared with a robust CVaR minimization portfolio and an equal weights portfolio and is found to have poor performance in terms of Sharpe ratio and certainty-equivalent return but exhibits better performance when it comes to maximum drawdown. This suggests that while the methodology is flawed, it still holds promise in certain niche applications. |
---|