Learning optimal portfolios with intrinsic rewards

A profitable stock trading strategy is crucial for financial institutions. However, it is difficult to find a successful trading strategy in the complex and dynamic financial market. A wise choice of an appropriate risk measure in trading problems is crucial to evaluate the investment performance as...

全面介紹

Saved in:
書目詳細資料
主要作者: Guan, Zihang
其他作者: Pun Chi Seng
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/156941
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A profitable stock trading strategy is crucial for financial institutions. However, it is difficult to find a successful trading strategy in the complex and dynamic financial market. A wise choice of an appropriate risk measure in trading problems is crucial to evaluate the investment performance as well as to guide the RL trading agent to profit. In this dissertation, we are motivated to study the efficacy of learning optimal portfolios with intrinsic rewards. The main contributions of this dissertation include formally deriving the algorithm to incorporate the optimal intrinsic reward on Advantage Actor-Critic (A2C) RL algorithm and first applying the A2C algorithm with optimal intrinsic reward in finance environment.