Extrapolative Bayesian optimization with Gaussian process and neural network ensemble surrogate models

Bayesian optimization (BO) has emerged as the algorithm of choice for guiding the selection of experimental parameters in automated active learning driven high throughput experiments in materials science and chemistry. Previous studies suggest that optimization performance of the typical surrogate m...

全面介紹

Saved in:
書目詳細資料
Main Authors: Lim, Yee-Fun, Ng, Chee Koon, Vaitesswar, U. S., Hippalgaonkar, Kedar
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/159296
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!