Weakly-supervised sensor-based activity segmentation and recognition via learning from distributions
Sensor-based activity recognition aims to recognize users' activities from multi-dimensional streams of sensor readings received from ubiquitous sensors. It has been shown that data segmentation and feature extraction are two crucial steps in developing machine learning-based models for sensor-...
محفوظ في:
المؤلفون الرئيسيون: | Qian, Hangwei, Pan, Sinno Jialin, Miao, Chunyan |
---|---|
مؤلفون آخرون: | School of Computer Science and Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/159353 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Sensor-based activity recognition via learning from distributions
بواسطة: Qian, Hangwei, وآخرون
منشور في: (2018) -
Latent independent excitation for generalizable sensor-based cross-person activity recognition
بواسطة: Qian, Hangwei, وآخرون
منشور في: (2021) -
Distribution-based semi-supervised learning for activity recognition
بواسطة: Qian, Hangwei, وآخرون
منشور في: (2019) -
A novel distribution-embedded neural network for sensor-based activity recognition
بواسطة: Qian, Hangwei, وآخرون
منشور في: (2020) -
Weakly-supervised cross-domain road scene segmentation via multi-level curriculum adaptation
بواسطة: Lv, Fengmao, وآخرون
منشور في: (2022)