Multi-center validation study of automated classification of pathological slowing in adult scalp electroencephalograms via frequency features
Pathological slowing in the electroencephalogram (EEG) is widely investigated for the diagnosis of neurological disorders. Currently, the gold standard for slowing detection is the visual inspection of the EEG by experts, which is time-consuming and subjective. To address those issues, we propose th...
محفوظ في:
المؤلفون الرئيسيون: | Peh, Wei Yan, Thomas, John, Bagheri, Elham, Chaudhari, Rima, Karia, Sagar, Rathakrishnan, Rahul, Saini, Vinay, Shah, Nilesh, Srivastava, Rohit, Tan, Yee-Leng, Dauwels, Justin |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/159814 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multi-Center Validation Study of Automated Classification of Pathological Slowing in Adult Scalp Electroencephalograms Via Frequency Features
بواسطة: Peh, Wei Yan, وآخرون
منشور في: (2021) -
Automated adult epilepsy diagnostic tool based on interictal scalp electroencephalogram characteristics: a six-center study
بواسطة: Thomas, John, وآخرون
منشور في: (2022) -
H∞ adaptive filters for eye blink artifact minimization from electroencephalogram
بواسطة: Puthusserypady, S., وآخرون
منشور في: (2014) -
Human-building interaction under various indoor temperatures through neural-signal electroencephalogram (EEG) methods
بواسطة: Shan, Xin, وآخرون
منشور في: (2020) -
Automated detection of interictal epileptiform discharges in scalp electroencephalogram of patients with epilepsy
بواسطة: Bagheri, Elham
منشور في: (2019)