A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing
In the aerospace engineering, many metal parts produced using Additive Manufacturing (AM) technique often bear cyclic loadings, so the fatigue failures of AM alloy parts become very common phenomena. In this work, a new method is proposed to investigate the fatigue damage behavior of AM aerospace al...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/159864 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |