Augmenting the Delsarte bound: a forbidden interval for the order of maximal cliques in strongly regular graphs

In this paper, we study the order of a maximal clique in an amply regular graph with a fixed smallest eigenvalue by considering a vertex that is adjacent to some (but not all) vertices of the maximal clique. As a consequence, we show that if a strongly regular graph contains a Delsarte clique, then...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Greaves, Gary Royden Watson, Koolen, Jack H., Park, Jongyook
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/159972
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this paper, we study the order of a maximal clique in an amply regular graph with a fixed smallest eigenvalue by considering a vertex that is adjacent to some (but not all) vertices of the maximal clique. As a consequence, we show that if a strongly regular graph contains a Delsarte clique, then the parameter μ is either small or large. Furthermore, we obtain a cubic polynomial that assures that a maximal clique in an amply regular graph is either small or large (under certain assumptions). Combining this cubic polynomial with the claw-bound, we rule out an infinite family of feasible parameters (v, k, λ, μ) for strongly regular graphs. Lastly, we provide tables of parameters (v, k, λ, μ) for nonexistent strongly regular graphs with smallest eigenvalue −4, −5, −6 or −7.