Justifying the norms of inductive inference
Bayesian inference is limited in scope because it cannot be applied in idealized contexts where none of the hypotheses under consideration is true and because it is committed to always using the likelihood as a measure of evidential favouring, even when that is inappropriate. The purpose of this art...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/159993 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Bayesian inference is limited in scope because it cannot be applied in idealized contexts where none of the hypotheses under consideration is true and because it is committed to always using the likelihood as a measure of evidential favouring, even when that is inappropriate. The purpose of this article is to study inductive inference in a very general setting where finding the truth is not necessarily the goal and where the measure of evidential favouring is not necessarily the likelihood. I use an accuracy argument to argue for probabilism and I develop a new kind of argument to argue for two general updating rules, both of which are reasonable in different contexts. One of the updating rules has standard Bayesian updating, Bissiri et al.’s ([2016]) general Bayesian updating, Douven’s ([2016]) IBE-based updating, and my (Vassend ([forthcoming]) quasi-Bayesian updating as special cases. The other updating rule is novel. |
---|