Sector entry flow prediction based on graph convolutional networks

Improving short-term air traffic flow prediction can help forecast demand and maximize existing capacity by tactical air traffic flow management. Most existing studies in flow prediction lacks consideration of the dynamic, structural, and interrelated nature of air traffic flows in the airspace. The...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ma, Chunyao, Alam, Sameer, Cai, Qing, Delahaye, Daniel
其他作者: School of Mechanical and Aerospace Engineering
格式: Conference or Workshop Item
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/160332
https://www.icrat.org/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Improving short-term air traffic flow prediction can help forecast demand and maximize existing capacity by tactical air traffic flow management. Most existing studies in flow prediction lacks consideration of the dynamic, structural, and interrelated nature of air traffic flows in the airspace. Therefore, this paper proposes to predict sector entry flows based on graph convolutional networks, which consider the dynamic spatial-temporal features of air traffic from a graph perspective. First, we specify a sector entry flow based on its upstream and downstream sectors. Then, each entry flow is denoted as a node in a graph. The weighted edges between the nodes are learned from a Word2vec model based on air traffic flows among the nodes. With the weighted graph constructed and the temporal flows on the nodes extracted from the flight trajectories, an Attention-based Spatial-Temporal Graph Convolutional Network (ASTGCN) module is adopted to capture spatial-temporal features of recent, daily-periodic, and weekly-periodic flows in the graph. Finally, The outputs from the ASTGCN module based on the three features are fused to generate the final prediction results. The proposed method is applied on 164 sectors of French airspace for one-month ADS-B data )from Dec 1, 2019, to Dec 31, 2019) which includes 158,856 flights. Results show that, the proposed method outperforms the well established Long short-term memory (LSTM) model, and demonstrates better capability in predicting rapid changes in traffic flow and has relatively smaller decrease in prediction accuracy as the prediction time-window increases.